

http://www.tibco.com

Global Headquarters
3303 Hillview Avenue
Palo Alto, CA 94304
Tel: +1 650-846-1000
Toll Free: 1 800-420-8450
Fax: +1 650-846-1005

©Copyright 2014, TIBCO Software Inc. All

rights reserved. TIBCO, the TIBCO logo, The

Power of Now, and TIBCO Software are

trademarks or registered trademarks of

TIBCO Software Inc. in the United States

and/or other countries. All other product and

company names and marks mentioned in

this document are the property of their

respective owners and are mentioned for

identification purposes only. 0204

Consulting

Services

TIBCO SonarQube
BusinessWorks 6.x Plugin
Guidelines

Project Name SonarQube BusinessWorks 6.x Plugin

Release 1.0.0

Date 21/12/2015

Primary Author Kapil Shivarkar/TIBCO

Document Owner Kapil Shivarkar/TIBCO

Client

Document Location

Purpose This document is the guide for SonarQube

BusinessWorks 6.x Plugin.

http://www.tibco.com/

Quality Management 2d71d39ca00cd7a219290e610e851170

 2

LICENSE INFORMATION

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Quality Management 2d71d39ca00cd7a219290e610e851170

 3

Revision History

Version Date Author Comments

1.0.0 21/12/2015 Kapil Shivarkar First release

Approvals

This document requires the following approvals. Signed approval forms are filed in the project files.

Name Signature Title Company Date of Issue Version

Distribution

This document has been distributed to:

Name Title Company Date of Issue Version

Quality Management 2d71d39ca00cd7a219290e610e851170

 4

Table of Contents

A Introduction ... 6

B Architecture ... 7

C Continuous Integration ... 8

D Definitions .. 9

D.1 Commons .. 9
D.1.1 Quality management .. 9
D.1.2 Quality assurance ... 9

D.2 SonarQube .. 9
D.2.1 Basis ... 9
D.2.2 Analysis modes .. 10
D.2.3 Stakeholders/components .. 10
D.2.4 Quality ... 11
D.2.5 Web interface ... 11

D.3 Analysis pipeline .. 12
D.4 Plugin extensions .. 12

E Features ... 14

E.1 Code analysis .. 14
E.1.1 Languages .. 14
E.1.2 Profiles .. 14
E.1.3 Sensors... 14

E.2 UI extensions ... 14
E.2.1 BusinessWorks Metrics Widget .. 14

F Rules for BusinessWorks 6.x analysis .. 16

F.1 BusinessWorks 6.x .. 16
F.1.1 Deadlock Detection Check ... 16
F.1.2 Activities in Critical Section Check ... 16
F.1.3 Checkpoint Activity inside Critical Section Group Check 16
F.1.4 Multiple Transitions Check ... 17
F.1.5 Log Only in Subprocess Check .. 17
F.1.6 Checkpoint inside Transaction Group Check ... 17
F.1.7 Checkpoint after HTTP Activities Check .. 18
F.1.8 Checkpoint after REST Webservice Call Check .. 18
F.1.9 Checkpoint after JDBC Query Activity Check .. 18
F.1.10 Choice Condition with No Otherwise Check... 19
F.1.11 Transition Labels Check ... 19
F.1.12 JDBC WildCard Check ... 19
F.1.13 JDBC HardCoded Check .. 19
F.1.14 JMS HardCoded Check .. 20
F.1.15 For-Each Group Check ... 20
F.1.16 For-Each Mapping Check ... 20
F.1.17 JMS Acknowledgement Mode Check ... 21
F.1.18 Data Availability to Inline SubProcess Check... 21
F.1.19 Number of Activities Check .. 21

Quality Management 2d71d39ca00cd7a219290e610e851170

 5

F.1.20 Number of Exposed Services Check .. 21
F.1.21 No Process Description Check ... 22

G Administration guide .. 23

G.1 Requirements .. 23
G.2 Installation .. 23
G.3 Configuration ... 23

G.3.1 General Settings ... 23
G.4 Customization .. 23

G.4.1 Quality Profiles ... 23
G.4.2 Rules ... 24
G.4.3 Quality Gates .. 26

H Developer Guide .. 27

H.1 Coding a new rule .. 27

I User guide .. 28

I.1 Execute an analysis ... 28
I.1.1 Introduction ... 28
I.1.2 Using Maven ... 28

I.1.2.1 Prerequisites ... 28
I.1.2.2 Configure your pom.xml .. 29
I.1.2.3 Run the analysis.. 30

I.1.3 Using SonarQube Runner .. 30
I.1.3.1 Prerequisites ... 30
I.1.3.2 Create project configuration file... 30
I.1.3.3 Run the analysis.. 30

I.1.4 Using Jenkins ... 30
I.2 Customize a report .. 31

I.2.1 Introduction ... 31
I.2.2 Add the BusinessWorks Metrics Widget .. 31

I.3 BusinessWorks Process visualization ... 32
I.3.1 Issues Visualization .. 32

J Configuring SonarQube in TIBCO BusinessStudio 35

K Useful links .. 37

Quality Management 2d71d39ca00cd7a219290e610e851170

 6

A Introduction

SonarQube is an open source platform for continuous inspection of code quality. SonarQube

BusinessWorks 6 Plugin is a custom extension developed in order to manage TIBCO Business

Works code quality and design best practices.

SonarQube covers the 7 axes of code quality:

Figure 1. Seven axes of code quality in SonarQube

SonarQube is a web-based application. Rules, alerts, thresholds, exclusions, settings… can be

configured online. By leveraging its database, SonarQube not only allows to combine metrics

altogether but also to mix them with historical measures.

Quality Management 2d71d39ca00cd7a219290e610e851170

 7

B Architecture

The SonarQube Platform is made of 4 components:

1. One SonarQube Server starting 2 main processes:

a. Web Server for developers, managers to browse quality snapshots and configure the

SonarQube instance

b. Search Server based on Elasticsearch to back searches from the UI

2. One SonarQube Database to store:

a. the configuration of the SonarQube instance (security, plugins settings, etc.)

b. the quality snapshots of projects, views, etc.

3. Multiple SonarQube Plugins installed on the server. There are SonarQube plugins for languages

(BusinessWorks 6, Java etc), SCM, integration, authentication, and governance plugins

4. One or more SonarQube Scanners running on your Build / Continuous Integration Servers to

analyze projects

Quality Management 2d71d39ca00cd7a219290e610e851170

 8

C Continuous Integration

The following schema shows how SonarQube integrates with other ALM tools and where the various

components of SonarQube are used.

1. Developers code in their IDEs (BusinessWorks 6 Studio) and use SonarQube or

SonarLint plugin to run local analysis.

2. Developers push their code into their favourite SCM : git, SVN, TFVC, ...

3. The Continuous Integration Server triggers an automatic build, and the execution of the

SonarQube Scanner required to run the SonarQube analysis.

4. The analysis report is sent to the SonarQube Server for processing.

5. SonarQube Server processes and stores the analysis report results in the SonarQube Database,

and displays the results in the UI.

6. Developers review, comment, challenge their Issues to manage and reduce their Technical

Debt through the SonarQube UI.

7. Managers receive Reports from the analysis.

Ops use APIs to automate configuration and extract data from SonarQube.

Ops use JMX to monitor SonarQube Server.

http://www.sonarlint.org/

Quality Management 2d71d39ca00cd7a219290e610e851170

 9

D Definitions

D.1 Commons

D.1.1 Quality management

Quality management ensures that an organization, product or service is consistent. It has four main

components: quality planning, quality control, quality assurance and quality improvement.

Quality management is focused not only on product and service quality, but also the means to

achieve it. Quality management therefore uses quality assurance and control of processes as well

as products to achieve more consistent quality.

D.1.2 Quality assurance

Quality Assurance is the planned or systematic actions necessary to provide enough confidence

that a product or service will satisfy the given requirements.

D.2 SonarQube

D.2.1 Basis

Rules

In SonarQube, plugins contribute rules which are executed on source code and which generate

issues. The Rules page is the entry point where you can discover all the existing rules or create

new ones based on provided templates. Three types of rules exist in SonarQube:

 Standard Rules : basic rules that can be activated and define the issue severity

 Custom Rules : they are considered like any other rule but can be edited or deleted at any

moment of time

 Rule Templates : they can only be used to create custom rules and cannot be activated

because they are just empty templates with empty parameters

Issues

Quality Management 2d71d39ca00cd7a219290e610e851170

 10

While running an analysis, SonarQube raises an issue every time a piece of code breaks a coding

rule. The set of coding rules is defined through the quality profile associated with the project.

Developers can also manually raise issues that cannot be detected by SonarQube (examples: the

implementation of the method does not comply to the functional requirements, the javadoc of the

method does not match its implementation, etc.).

Each issue has one of five severities:

 BLOCKER: Bug with a high probability to impact the behavior of the application in

production: memory leak, unclosed JDBC connection, deadlocks etc.... The code MUST be

immediately fixed.

 CRITICAL: Either a bug with a low probability to impact the behavior of the application in

production or an issue which represents a security flaw: empty catch block, SQL injection,

etc... The code MUST be immediately reviewed.

 MAJOR: Quality flaw which can highly impact the developer productivity: uncovered

piece of code, duplicated blocks, unused parameters, etc...

 MINOR: Quality flaw which can slightly impact the developer productivity: lines should

not be too long or "switch" statements should have at least 3 cases, etc...

 INFO: Neither a bug nor a quality flaw, just a finding.

D.2.2 Analysis modes

Concept Definition

Analysis

Standard way to analyze the source code. The source code is analyzed and

measures and issues are pushed to the SonarQube database. The results of the

analysis can be browsed through the web interface.

Incremental

Same as Preview mode but only new or modified files (compared to the latest

version available on the remote server) are analyzed. This is the default mode of

the SonarQube Eclipse plugin and the SonarQube IntelliJ plugin.

Preview

The source code is analyzed but the measures and issues are not pushed to the

SonarQube database. Therefore, they cannot be browsed through the web

interface. This mode can be used with the Issues Report plugin, which generates

an HTML issues report to local file.

D.2.3 Stakeholders/components

Concept Definition

Analyzer A client application that analyzes the source code to compute snapshots.

Database
Stores:

 configuration

Quality Management 2d71d39ca00cd7a219290e610e851170

 11

 snapshots

Server
Web interface that is used to browse snapshot data and make configuration

changes

D.2.4 Quality

Concept Definition

Check Check = Coding Rule.

Coding Rule

A good coding practice. Not complying with coding rules leads to quality flaws

and creation of issues in SonarQube. Coding rules can check quality on files, unit

tests or packages.

Component
A piece of software (project, module/package, file, resource, process, etc…) or a

view or a developer.

Issue

When a component does not comply with a coding rule, an issue is logged (was

violation prior to SonarQube 3.6) on the snapshot.

An issue can be logged on a source file or a unit test file.

Measure
The value of a metric for a given component at a given time.

Example: 125 processes in BusinessWorks project MyProject

Metric

A type of measurement. Metrics can have varying values, or measures, over time.

Examples: number of lines of code, complexity, etc.

A metric may be either:

 Qualitative: gives a quality indication on the component (ex: density of

duplicated lines, line coverage by unit tests, etc.)

 Quantitative: does not give a quality indication on the component (ex:

number of lines of code, complexity, etc.)

Quality

Profile

A set of coding rules.

Each snapshot is based on a single quality profile.

Snapshot
A set of measures and issues on a given component at a given time.

A snapshot is generated for each analysis.

D.2.5 Web interface

Concept Definition

Dashboard
Web page that provides a way to display any data stored in the database.

A dashboard is a set of widgets.

Widget

It is a box that displays data on a dashboard.

There are two types of widget:

 Global widget - displays data from multiple projects

 Project widget - displays data from a specific project

Drilldown
A file-specific presentation of measure data. Some metrics have specialized

presentations.

Quality Management 2d71d39ca00cd7a219290e610e851170

 12

D.3 Analysis pipeline

A SonarQube analysis follows the following lifecycle:

1. Bootstrapper (SonarQube Maven Plugin, SonarQube Runner, SonarQube Ant Task)

collects a set of properties describing the project to analyze and starts the batch.

2. ProjectBuilder extensions are called to give a chance for plugins to change project structure

(add/remove module, change any property). After this step project structure can't be

modified.

3. For each module (bottom-up):

- Initializer extensions are called to give a chance to customize module configuration

(add/remove sources, change any property)

- SonarQube FileSystem is constructed (ie list of files to analyze). All project files

are indexed according to configuration (inclusions/exclusions). After this step the

FileSystem can't be modified.

- Sensor extensions are called. Usually to add measures/issues on files.

- Decorator extensions are called bottom-up on each element of the resource tree

(File -> Directory -> Module -> Project). Usually to aggregate measures or compute

"level-2" issues (issues based on result of sensors).

- All collected data (measures, issues, etc...) are persisted. No addition for this

module is permitted after this step.

4. Results of analysis are sent to the server

5. PostJob extensions are called. A PostJob can access all results of the analysis but not

change anything. Used for example to produce various reports (PDF, CSV).

D.4 Plugin extensions

A SonarQube plugin is a set of Java objects that implement extension points. These extension

points are interfaces or abstract classes which model an aspect of the system and define contracts

of what needs to be implemented. An extension point is a point in the application where plugin

code can be invoked, such as webapp page or code analyzer. Extension points are generally

Quality Management 2d71d39ca00cd7a219290e610e851170

 13

interfaces that can be implemented by plugins. Implementations have to be declared in the method

org.sonar.api.SonarPlugin#getExtensions() and are then injected in the IoC container.

The extension points are listed and documented in the Javadoc of SonarQube.

Quality Management 2d71d39ca00cd7a219290e610e851170

 14

E Features

E.1 Code analysis

SonarQube extensions (based on standard API) have been implemented in order to manage code

analysis for BusinessWorks 6 projects.

E.1.1 Languages

Similar to programming languages like Java, Groovy, C-Sharp, Android, PHP, JavaScript etc.

There is a new language that has been defined in SonarQube for TIBCO BusinessWorks 6.

1. The BusinessWorks 6 language defined in SonarQube will scan through the

BusinessWorks 6 projects/applications and perform analysis against defined set of rules.

E.1.2 Profiles

Quality Profile is a set of coding rules. The BusinessWorks 6 Profile has extensive set of rules

defined for BusinessWorks 6 language. The coding rules are based on code and design best

practices.

E.1.3 Sensors

Two kinds of sensors are implemented in SonarQube BusinessWorks6 plugin:

A) Metrics sensors that count and calculate all the measures related to BusinessWorks 6 projects

B) Rules sensors executing coding rules, checking code quality and to raising issues.

E.2 UI extensions

E.2.1 BusinessWorks Metrics Widget

A new widget has been implemented in order to show BusinessWorks 6 project metrics:

Quality Management 2d71d39ca00cd7a219290e610e851170

 15

This widget is implemented in BusinessWorksMetricsWidget class of

com.tibco.sonar.plugins.bw.widget package, based on a ruby (erb) template defined in the resource

folder: /com/tibco/businessworks6/sonar/plugin/widget/BusinessWorksMetrics.html.erb

It gives a quick overview of BW project size, with trend on each measure.

Quality Management 2d71d39ca00cd7a219290e610e851170

 16

F Rules for BusinessWorks 6.x analysis

F.1 BusinessWorks 6.x

F.1.1 Deadlock Detection Check

Description
There are many situations in which deadlocks can be created between communicating web

services. This rule checks for deadlocks and infinite loops in BW6 process design.

Priority BLOCKER

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class DeadLockCheck

F.1.2 Activities in Critical Section Check

Description

Critical section groups cause multiple concurrently running process instances to wait for one

process instance to execute the activities in the group. As a result, there may be performance

implications when using these groups. This rules checks that the Critical Section group does not

include any activities that wait for incoming events or have long durations, such as

Request/Reply activities, Wait For (Signal-In) activities, Sleep activity, or other activities that

require a long time to execute.

Priority CRITICAL

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CriticalSectionCheck

F.1.3 Checkpoint Activity inside Critical Section Group Check

Description
This rule checks the placement of a Checkpoint activity within a process. It’s a bad design

practice to place Checkpoint activity within a Critical Section Group.

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CheckpointInTransation

Quality Management 2d71d39ca00cd7a219290e610e851170

 17

F.1.4 Multiple Transitions Check

Description

EMPTY activity should be used if you want to join multiple transition flows. For example, there

are multiple transitions out of an activity and each transition takes a different path in the

process. In this scenario you can create a transition from the activity at the end of each path to

an Empty activity to resume a single flow of execution in the process. This rule checks whether

multiple transitions from an activity in a parallel flow merge into EMPTY activity

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class MultipleTransitionCheck

F.1.5 Log Only in Subprocess Check

Description
If there is logging or auditing required at multiple points in your project, its advised to write

logging and auditing code in a SubProcess and invoke this process from any point where this

functionality is required. This rule checks whether LOG activity is used in subprocess

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class LogOnlyInSubprocessCheck

F.1.6 Checkpoint inside Transaction Group Check

Description
This rule checks the placement of a Checkpoint activity within a process. Do not place

checkpoint within or in parallel to a Transaction Group. Checkpoint activities should be placed

at points that are guaranteed to be reached before or after the transaction group is reached.

Priority CRITICAL

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CheckpointInTransation

Quality Management 2d71d39ca00cd7a219290e610e851170

 18

F.1.7 Checkpoint after HTTP Activities Check

Description

This rule checks the placement of a Checkpoint activity within a process. When placing your

checkpoint in a process, be careful with certain types of process starters or incoming events, so

that a recovered process instance does not attempt to access resources that no longer exist. For

example, consider a process with an HTTP process starter that takes a checkpoint after

receiving a request but before sending a response. In this case, when the engine restarts after a

crash, the recovered process instance cannot respond to the request since the HTTP socket is

already closed. As a best practice, do not place Checkpoint activity right after or in parallel path

to HTTP activities.

Priority CRITICAL

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CheckpointAfterHttpCheck

F.1.8 Checkpoint after REST Webservice Call Check

Description
This rule checks the placement of a Checkpoint activity within a process. Do not place

checkpoint after or in a parallel flow of REST webservice call.

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CheckpointAfterHttpCheck

F.1.9 Checkpoint after JDBC Query Activity Check

Description

This rule checks the placement of a Checkpoint activity within a process. Do not place

checkpoint after or in a parallel flow of Query activities or idempotent activities. Database

operations such as Update, Insert and Delete are considered non-idempotent operations. You

should always place a checkpoint immediately after any database insert or update activity to

persist the response. However, for queries, there is no need to place checkpoints

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class CheckpointAfterJDBCÇheck

Quality Management 2d71d39ca00cd7a219290e610e851170

 19

F.1.10 Choice Condition with No Otherwise Check

Description
This rule checks all activities input mapping for choice statement. As a coding best practice, the

choice statement should always include the option otherwise.

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class ChoiceOtherwiseCheck

F.1.11 Transition Labels Check

Description
This rule checks whether the transitions with the type 'Success With Condition' (XPath) have a

proper label. This will improve code readability

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class TransitionLabelCheck

F.1.12 JDBC WildCard Check

Description
This rule checks whether JDBC activities are using wildcards in the query. As a good coding

practice, never use wildcards in JDBC queries.

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class JDBCWildCardCheck

F.1.13 JDBC HardCoded Check

Description
This rule checks JDBC activities for hardcoded values for fields Timeout and MaxRows. Use

Process property or Module property.

Priority MAJOR

Type Custom Rule

Quality Management 2d71d39ca00cd7a219290e610e851170

 20

Package com.tibco.businessworks6.sonar.plugin.check.process

Class JDBCHardCodeCheck

F.1.14 JMS HardCoded Check

Description
This rule checks JMS activities for hardcoded values for fields Timeout, Destinaton, Reply to

Destination, Message Selector, Polling Interval. Use Process property or Module property

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class JMSHardCodeCheck

F.1.15 For-Each Group Check

Description
This rule checks the ForEach group. It is recommended to use For-Each activity input mapping

instead of using For-Each/Iteration Group wherever possible. Do not use iteration groups just

for mapping repeating elements.

Priority INFO

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class ForEachGroupCheck

F.1.16 For-Each Mapping Check

Description
This rule checks the Input mappings of activities. In activity Input mapping for performance

reasons, it is recommended ato use Copy-Of instead of For-Each whenever possible.

Priority INFO

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class ForEachMappingCheck

Quality Management 2d71d39ca00cd7a219290e610e851170

 21

F.1.17 JMS Acknowledgement Mode Check

Description
This rule checks the acknowledgement mode used in JMS activities. Avoid using Auto

Acknowledgement to minimize the risk of data loss.

Priority INFO

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class JMSAcknowledgementModeCheck

F.1.18 Data Availability to Inline SubProcess Check

Description
This rule checks if there is large set of data being passed everytime to Inline SubProcess. Use of

Job Shared Variable is recommended in this scenario to increase performance.

Priority INFO

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class SubProcessInlineCheck

F.1.19 Number of Activities Check

Description
This rule checks the number of activities within a process, too many activities reduces the

process readability.

Priority MINOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class NumberofActivitiesCheck

F.1.20 Number of Exposed Services Check

Description
This rule checks the number of exposed services within a process. It is a good design practice to

construct not more than 5 services in the same process.

Priority MAJOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Quality Management 2d71d39ca00cd7a219290e610e851170

 22

Class NumberofServicesCheck

F.1.21 No Process Description Check

Description This rule checks if there is description specified for a process

Priority MINOR

Type Custom Rule

Package com.tibco.businessworks6.sonar.plugin.check.process

Class NoDescriptionCheck

Quality Management 2d71d39ca00cd7a219290e610e851170

 23

G Administration guide

G.1 Requirements

- SonarQube 4.5.6 or later

- JDK/JRE 7 or later

G.2 Installation

Copy the delivered jar into /extensions/plugins folder, relative to your Sonar installation folder.

G.3 Configuration

G.3.1 General Settings

You will be able to redefine files extensions for each language using the General Configuration

Section in SonarQube Settings > Configuration.

G.4 Customization

G.4.1 Quality Profiles

To create a quality profile, click on the Create button on the upper right of the Quality Profiles

page.

Quality Management 2d71d39ca00cd7a219290e610e851170

 24

In the dialog that pops up enter the name of the quality profile. It must be unique among profile

names for that language. For some languages, such as Java and PHP, you can optionally provide

configuration files for the external tools used during analysis in order to pre-populate the new

quality profile with some existing rules configurations. For Java you can provide files for

Checkstyle, PMD and Findbugs.

G.4.2 Rules

Whatever search you're doing on the Rules page, you always have the opportunity to activate the

rule you're looking at on a quality profile (assuming you're logged in and have the correct

permissions).

For instance, let's say that you're browsing all the rules working on “BusinessWorks Process”

language and you find that one is not activated in any of your profiles:

Quality Management 2d71d39ca00cd7a219290e610e851170

 25

After clicking on the activate button, you will be able to configure your rule:

Once the rule is activated, it appears in the list of the "Quality Profiles" section, in BusinessWorks

6 Profiles.

Note that you do not necessarily need to do this activation rule by rule. You have the option to

bulk activate/deactivate all the rules returned by your search for a single profile:

Quality Management 2d71d39ca00cd7a219290e610e851170

 26

G.4.3 Quality Gates

To manage quality gates, go to Quality Gates (top bar):

A quality gate is a set of conditions and a set of projects to be checked against these conditions.

Conditions can be set on measures (i.e. No blocker issues) or on deltas (i.e. No new blocker issues

since previous version). Two thresholds can be set for each condition: warning and error.

Quality Management 2d71d39ca00cd7a219290e610e851170

 27

H Developer Guide

H.1 Coding a new rule

1) Create a new class (ex MyNewRuleCheck) in package

com.tibco.businessworks6.sonar.plugin.check.process

2) Extend class AbstractProcessCheck and write your logic for the rule in the implemented

method

protected void validate(ProcessSource processSource)

3) Add default rule configuration annotations

 @Rule(key = MyNewRuleCheck.RULE_KEY, name="Example Rule Check", priority = Priority.MAJOR,

description = "This is an example rule for BusinessWorks 6")

@BelongsToProfile(title = ProcessSonarWayProfile.defaultProfileName, priority = Priority.MAJOR)

4) In the implemented validate method

a) When the conditions of the rule are met, create a violation

(com.tibco.businessworks6.sonar.plugin.violation.Violation) such as:

Violation violation = new DefaultViolation(getRule(), 1, "MyNewRule conditions

are fulfilled");

a. Add violation to source code.

processSource.addViolation(violation);

5) In class ProcessRuleDefinition of package

com.tibco.businessworks6.sonar.plugin.rulerepository add your rule in the constant

public static Class check[] = {

 com.tibco.businessworks6.sonar.plugin.check.process.NoDescriptionCheck.class,

 com.tibco.businessworks6.sonar.plugin.check.process.NumberofActivitiesCheck.class,

 com.tibco.businessworks6.sonar.plugin.check.process. MyNewRuleCheck.class

 };

6) In constructor of the class AbstractRuleSensor add the rule to the list

 List<Class> allChecks = new ArrayList<Class>();

 allChecks.add(NoDescriptionCheck.class);

 allChecks.add(NumberofActivitiesCheck.class);

 allChecks.add(MyNewRuleCheck.class);

7) Setup Sonar to add the rule in the current profile as explained in G.4.2

Quality Management 2d71d39ca00cd7a219290e610e851170

 28

I User guide

I.1 Execute an analysis

I.1.1 Introduction

First, you should install the plugin(s) for the language(s) of the project to be analyzed, either by a

direct download or through the update center.

Then, you need to choose an analysis method. The following are available:

- Analyzing with SonarQube Runner (recommended analyzer)

- Analyzing with Maven

- Analyzing with SonarQube Ant Task

- Analyzing with Gradle

- CI Engines

Compatibility Matrix

This chart shows the backward compatibility of the current version of each analysis engine.

I.1.2 Using Maven

I.1.2.1 Prerequisites

Download and install Maven (see Compatibility Matrix).

You must have previously installed and configured Maven for SonarQube

(http://docs.sonarqube.org/display/SONAR/Installing+and+Configuring+SonarQube+Scanner+for

+Maven).

http://docs.sonarqube.org/display/SONAR/Installing+and+Configuring+SonarQube+Scanner+for+Maven
http://docs.sonarqube.org/display/SONAR/Installing+and+Configuring+SonarQube+Scanner+for+Maven

Quality Management 2d71d39ca00cd7a219290e610e851170

 29

This link explains how to set global settings in settings.xml for database parameters to be used as

well as the SonarQube server URL.

I.1.2.2 Configure your pom.xml

Generate the pom.xml using the TIBCO BusinessWorks 6 Maven plugin. Thereafter, configure the

pom of your project to tell to SonarQube where is included your source code.

Mainly, you should define a sonar.sources property pointing your project folder:

Quality Management 2d71d39ca00cd7a219290e610e851170

 30

I.1.2.3 Run the analysis

Then it’s very simple to run your analysis. You just have to execute the following goal on your

project:

mvn clean install sonar:sonar

I.1.3 Using SonarQube Runner

I.1.3.1 Prerequisites

You must have previously installed the SonarQube Runner and read Analyzing Code Source. You

must also have the BusinessWorks SonarQube plugin installed.

I.1.3.2 Create project configuration file

Create a configuration file in the root directory of the project: sonar-project.properties

I.1.3.3 Run the analysis

Run the following command from the project base directory to launch the analysis:

sonar-runner

I.1.4 Using Jenkins

Please, check the official documentation about the Jenkins plugin for SonarQube:

http://docs.sonarqube.org/display/SONAR/Analyzing+with+SonarQube+Scanner+for+Jenkins

http://docs.sonarqube.org/display/SONAR/Analyzing+with+SonarQube+Scanner+for+Jenkins

Quality Management 2d71d39ca00cd7a219290e610e851170

 31

I.2 Customize a report

I.2.1 Introduction

Users should customize their SonarQube web interface to stay focused on what is of interest for

them:

- Customizing Dashboards

- Favorite

- Notifications

I.2.2 Add the BusinessWorks Metrics Widget

To add a widget, click on Configure widgets. The list of available widgets is shown at the top of

the page. Search for “BusinessWorks Project Metrics” widget.

Then you can click on Add widget button to append the “BusinessWorks Project Metrics” widget

into your dashboard:

Quality Management 2d71d39ca00cd7a219290e610e851170

 32

Obviously, you can position this widget wherever you want in your dashboard, as any other

widget.

I.3 BusinessWorks Process visualization

I.3.1 Issues Visualization

This feature is usable in any SonarQube web page.

The following steps allow you visualizing your processes:

1) After running analysis on TIBCO BusinessWorks 6 project, on your browser navigate to

http://localhost:9000/

Click on the project you have run analysis on.

2) After clicking on the project you are redirected to Dashboard page where you can see

various widgets highlighting BusinessWorks 6 project statistics, Issues etc.

Quality Management 2d71d39ca00cd7a219290e610e851170

 33

3) After clicking on Issues you will be redirected to a page where you will find which rules

were violated and which processes the violations took place in.

4) After clicking on the process you will see the violations in the process with detailed

summary of the violation.

Quality Management 2d71d39ca00cd7a219290e610e851170

 34

5) After clicking on violation you will see Rule detail.

6) Alternatively, just click on Issues tab and you will be able to see all the issues listed in the

project.

Quality Management 2d71d39ca00cd7a219290e610e851170

 35

J Configuring SonarQube in TIBCO BusinessStudio

To setup SonarQube plugin for Eclipse, follow

http://docs.sonarqube.org/display/SONAR/Configuring+SonarQube+in+Eclipse

After running analysis you can view the issues in TIBCO BusinessStudio as well.

Once running the analysis from Maven, you can run subsequent analysis incase of code change

from TIBCO BusinessStudio itself by right clicking the project and choosing SonarQube>Analyze

http://docs.sonarqube.org/display/SONAR/Configuring+SonarQube+in+Eclipse
http://docs.sonarqube.org/display/SONAR/Configuring+SonarQube+in+Eclipse

Quality Management 2d71d39ca00cd7a219290e610e851170

 36

You can also view the Rules Description with associated violation by right clicking on the

violation and choose Rule Description.

NOTE - The SonarQube Eclipse plugin does not work with SonarQube 5.2+. It is replaced

by SonarLint for Eclipse. SonarLint presently doesn’t support analysis on custom languages, but

once it starts supporting it is advisable to use SonarLint instead of SonarQube Eclipse plugin.

http://www.sonarlint.org/eclipse/index.html

Quality Management 2d71d39ca00cd7a219290e610e851170

 37

K Useful links

http://docs.codehaus.org/display/SONAR/Documentation

http://docs.codehaus.org/display/SONAR/Documentation

